
Operating Systems 2016/17
Solutions for Assignment 7

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

T-Question 7.1: Synchronization

a. What are the three requirements for a valid solution of the critical-section problem?
Give a short explanation for each. 2 T-pt

Solution:

Mutual Exclusion At most one thread can be in the critical section at any time

Progress No thread running outside of the critical section may block another thread
from getting in

• If no thread is in the critical section, a thread trying to enter will eventually
get in
• If no thread can enter the critical section→ do not have have progress

Bounded Waiting Once a thread starts trying to enter the critical section, there is a
bound on the number of times other threads get in

• You cannot make assumptions concerning relative speeds of threads
• Do not have bounded waiting if thread A waits to enter critical section while

B repeatedly leaves and re-enters the critical section infinitely

b. Can spinlocks be implemented entirely in user-mode? Explain your answer. 1 T-pt

Solution:
Yes, spinlocks can be built entirely in user-mode. To implement a spinlock we on-
ly need a simple lock variable (e.g., an int) and an atomic test-and-set instruction
provided by the hardware. As atomic instructions are not privileged they can be used
in user-mode.

c. Using a CPU register for a spinlock’s lock variable would be much faster than the
implementation with a variable in memory. Why would such a spinlock not work? 1 T-pt

Solution:
Registers are thread local as their contents is replaced on thread switches. However,
the lock variable of a spinlock must be shared between threads and thus cannot be
placed in a register.

d. What is the idea behind Linux’s futexes? 1 T-pt

Solution:
Futexes combine the advantages of (user-mode) spinlocks (no kernel entry necessa-
ry) and mutexes (no busy waiting). Before a thread blocks on the mutex and thus
needs to enter the kernel, it first spins a certain time in user-mode, trying to acquire
the spinlock. This way, the futex tries to avoid the costly blocking wait in the kernel.

1

e. The CRITICAL SECTION synchronization object in Windows works similarly to fu-
texes in Linux. However, the documentation states that on single-processor sys-
tems, the spinlock is ignored. Why did the Microsoft developers choose this design? 1 T-pt
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682530%28v=vs.85%29.aspx

Solution:
The idea behined futexes is that while a thread is still waiting on the spinlock, the
thread holding the futex makes progress (i.e., runs on a different CPU) and thus may
leave the critical section before the waiting thread performs a blocking wait.

The single-processor system, however, provides no hardware parallelism and only
one of the threads (the one holding the lock or the one spinning) may run at a time.
The spinning thread will therefore always run into the blocking wait, wasting all CPU
cycles during the spinning phase.

2

T-Question 7.2: Ring Buffer
Consider the following solution to synchronize the access to a shared ring buffer
with multiple producers and a single consumer thread.

1 #define BUFFER SIZE 10
2 int ringbuffer [BUFFER SIZE] ; // Buffer with 10 elements
3 int i ndex f i l l = 0; // Index to next f i l l e d buffer element
4 int index empty = 0; // Index to next empty buffer element
5
6 sem t f i l l , empty ; // Semaphores to synchronize access
7
8 void i n i t i a l i z e () {
9 // I n i t i a l i z e semaphores to a l l elements free

10 sem init (& f i l l , 0 , 0) ; // I n i t i a l i z e to 0
11 sem init (&empty , 0 , BUFFER SIZE) ; // I n i t i a l i z e to buffer size
12 }

13 void∗ producer thread main (void∗ arg) {
14 while (1) {
15 int item = produce () ;
16
17 // Wait for empty s lot and
18 // ” reserve ” i t atomically
19 sem wait(&empty) ;
20
21 ringbuffer [index empty] = item ;
22 index empty = (index empty + 1)
23 % BUFFER SIZE;
24
25 // Signal consumer thread
26 // that an item is ready
27 sem post(& f i l l) ;
28 }
29 }

30 void∗ consumer thread main (void∗ arg) {
31 while (1) {
32 // Wait for an item in the buffer
33 // and claim i t
34 sem wait(& f i l l) ;
35
36 int item = ringbuffer [i ndex f i l l] ;
37 index f i l l = (i ndex f i l l + 1)
38 % BUFFER SIZE;
39
40 // Signal producer threads that
41 // an buffer s lot is empty again
42 sem post(&empty) ;
43
44 consume(item) ;
45 }
46 }

a. Give an execution sequence that causes an error. 2 T-pt

Solution:
As we have multiple producer threads, we potentially have multiple threads that are
concurrently add a new item to the buffer:

(a) Thread A and B execute produce() (line 15).
(b) Thread A and B acquire a free slot in the buffer by entering through the empty

semaphore (line 19).
(c) Thread A and B concurrently write to buffer[index empty], using the same in-

dex and thus overwriting each other’s items (line 21).

On the consumer side, we do not have the same problem, because only a single
consumer exists.

b. What general code changes are necessary to prevent the error? You do not need to
provide the actual code, but give line numbers to specify where changes are ne-
cessary. 2 T-pt

Solution:
We have to introduce a mutex that synchronizes the access to the buffer on the pro-
ducer side to prevent a race condition between the multiple producer threads. We
thus add a lock-operation for the new mutex in line 20 and an unlock operation in
line 24. If necessary the mutex can be initialized in initialize() (e.g., line 9). Total:

10T-pt3

